人們利用3D打印來生產一些小型的或便攜式的東西已經不再稀奇。然而,很少有人能會利用這項技術來制造龐然大物,尤其是制造火箭——這聽起來就像個天方夜譚的任務。不過,初創公司Relativity Space的創始人兼首席執行官Tim Ellis可不這么認為。
鋁合金的3D打印正在更多的“綁定”金屬3D打印工藝,從而形成多樣化的發展,并且帶來了持續發展的機遇。在金屬3D打印工藝中,PBF(包括SLM/DMLS,EBM工藝)粉末床熔化金屬3D打印是鋁合金更為理想的加工工藝 ,而基于粘結劑噴射(Binder Jetting)的間接金屬3D打印工藝,由于后處理熱加工過程容易導致鋁合金燃燒,在鋁合金的加工方面目前不具備優勢。
毫無疑問,3D打印(在工業上也稱為增材制造; AM)已經正在引發制造轉型,從快速交付備件到定制化生產,增材制造技術可以幫助簡化設備維護,加速研發過程以及通過功能為導向的設計來提升產品性能。
同時,材料工程師正在積極擴展可3D打印材料的界限,不僅包括塑料和金屬,還包括納米材料,生物基材料等,3D打印正在逐漸成為主流制造技術。本期,3D科學谷與谷友來共同領略3D打印納入主流制造技術的挑戰與現狀。《3D打印成為主流制造技術的最新狀態》將分為上下兩篇來進行行業發展透視,上篇將聚焦在3D打印納入主流制造技術的基礎建設部分。
微重力的3D打印正在引起科學家和航空航天工程師日益增長的興趣,尤其是在國際空間站的這種活動中。德國和法國的研究人員在最近發表的“以μ-重力實現金屬部件的3D打印”中探討了微重力印刷的主題。研究團隊關注制定太空工作和生活的策略,深入研究可能面臨的挑戰。金屬添加劑制造 ,重力很小。
金屬3D打印技術在過去幾年中一直是增材制造(AM)領域中討論最多的技術。它提供了令人興奮的,復雜的終端使用能力,塑料3D打印承諾在其崛起的媒體知名度10年前。然而,與塑料不同的是,金屬很早就兌現了承諾。值得注意的是,在金屬的流行期間,熱塑性AM一直在經歷一場安靜的革命。它已經有條不紊地發展起來,為最終使用的零件提供了創造性的新應用,并為小批量制造提供了持續的創新。
GE Catalyst是世界上第一臺采用3D打印組件的渦輪螺旋槳發動機,新型的結構設計因為3D打印降低了制造復雜性,它將此前通過傳統工藝制造的855個零件經過結構優化減少為12個部件,零件數量的減少極大提高了生產效率,并將發動機的重量減少了5%,燃油效率提高了1%,這顯示出3D打印集成制造優勢。