對于美國政府的某些廚師來說,條條大路通向3D打印。高超音速也是如此。 Astro America(有時也稱為AstroA)旨在利用新的制造技術來開發所謂的生產加速器設施(HPAF)。
微型3D打印系統專家Boston Micro Fabrication(BMF)推出了它所謂的“第一臺也是唯一的”用于短期工業生產的微型3D打印機microArch S240。該公司最新的打印機以BMF的專利投影微立體光刻技術(PμSL)為模型,采用了其他先進的材料,更大的打印體積和更快的打印速度。
美國國家標準技術研究院(NIST)的研究人員開發了一種3D打印凝膠和軟材料的新方法。該研究團隊沒有像大多數現代軟材料3D打印機那樣使用紫外激光(UV)或可見光來引發其凝膠,而是利用電子和X射線束來固化一系列光敏樹脂。事實證明,這些短波長的激光比常規光束更聚焦,并且能夠制造具有高水平結構細節的凝膠,尺寸小至100納米(nm)。NIST科學家最新開發的技術可以創建復雜的微觀結構,例如柔性電極,生物傳感器或軟微型機器人。
來自中國的研究人員受到折紙結構和材料的啟發,使他們走向更復雜的機器人技術,如最近出版的“折紙彈簧啟發的超材料和機器人:完全可編程機器人的嘗試”所述。從創新的手術器械到工程,天線甚至折疊機器人的可擴展應用,這并不是我們第一次看到折紙啟發的作品。在這項研究中,研究人員遠遠超出了折疊精美紙的技巧,他們試圖將材料編程到機器人系統中。這意味著不僅要檢查3D可打印性,還要檢查可折疊性和所需的機械性能。
隨著3D打印機的更新迭代,每一代的機器都會有相應的技術提升,制作打印機的成本也會隨之變化,導致價格也會相應的提高或降低,讓我們來看看是哪些成本讓3D打印機價格受到影響。
德國研究機構的弗勞恩霍夫家族不斷發明新穎的制造方法和輔助技術。這次是弗勞恩霍夫陶瓷技術與系統研究所(IKTS)的最新產品,是一種多材料噴墨系統,能夠在單一結構中3D打印多種金屬或陶瓷。為了證明這一過程,Fraunhofer IKTS研究人員3D打印了帶有內置點火裝置的陶瓷衛星。
哈佛大學工程與應用科學學院(SEAS)的研究人員已經開發出一種3D打印材料,該材料可以預先編程為具有可逆的形狀記憶功能。哈佛團隊的新型長絲由兩條角蛋白鏈組成,這些角蛋白鏈排列成扭曲在一起的彈簧狀結構。一旦組合成“線圈”,該材料就可以改變為任何形狀,然后以“形狀記憶效應”恢復其原始形狀。
屢獲殊榮的產品和工業設計師Zini曾致力于通過結合物理和數字世界元素的設計來創造切實,響應迅速的消費者體驗。她的工作探索了新興技術(例如AI,IoT,多材料3D打印)帶來的新設計思想和材料可能性。
近年來,彈性體3D打印材料提供的柔韌性和強度,推動了其在消費產品領域中的應用。許多研究人員開發了增強的彈性體基述職,以試圖擴大其在不同行業中的應用。美國陸軍實研究實驗室與德克薩斯AM大學聯合,開發具有自愈功能的3D聚合物材料,該技術將會應用于從人造肢體到柔性航空部件等多個領域。